
309 

Acta Cryst. (1969). A25, 309 
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A general theory is proposed for the diffraction line profiles of powders of close-packed crystals con- 
taining stacking faults. It covers two theories; one is the Gevers theory which combines the 'growth 
fault' with s (Reichweite) = 2 and the 'single deformation fault' in h.c.p., and the other the theory of the 
'extended growth fault' with s= 2. The anomalies in the line profiles of nearly h.c.p, and nearly f.c.c. 
powders, i. e. peak displacement, broadening, and asymmetry, are expressed as functions of stacking 
fault probabilities. The conclusion is as follows. Although the Gevers-Warren theory, which is being 
widely used for interpreting experimental results, is useful from the practical point of view, the fault 
probabilities obtained by use of this theory should only be taken as very rough estimates. 

Introduction 

Close-packed crystals, such as h.c.p, and f.c.c, crystals, 
generally contain many types of faults in stacking of 
the close-packed atomic layers. A classification of those 
types of stacking faults that have so far been dealt with 
is presented in Table 1. To the right of each type of 
stacking fault are listed the types which are included 
in it as special cases. Throughout the present paper, 
each of the Roman numerals (I) to (X) represents not 
only a type of stacking fault, but also the crystal struc- 
ture containing the faults concerned, and the relevant 
diffraction theory. 

'Growth faults' are kinds of stacking faults that 
occur during crystal growth by successive stackings of 
the unit-layers (Paterson, 1952; Barrett, 1952). For 
these a certain stacking sequence is equivalent to its 
twinned counterpart; e.g. the sequences AB, ABC, and 
ABA are equivalent to AC, ACB, and ACA, respec- 
tively, where A, B, and C are the usual symbols for 
the three possible lateral positions of the unit-layers. 
In Table 1 'growth faults' are classified with respect 
to their 'Reichweite' s (Jagodzinski, 1949a), i.e. the 

number of unit-layers preceding a given layer which 
are effective in determining the position of the given 
layer. In order to keep a crystal close-packed, s > 1 is 
necessary. No variable fault probabilities are associated 
with the 'growth fault' with s =  1 (I), and this is the 
most random case of close-packing. Variable fault 
probabilities, 2 s-2 in number, are associated with the 
cases ofs > 2. Two extreme cases involved in the Wilson 
theory (II) are the h.c.p, and f.c.c, structures. 

For surveying various cases involved in the theory 
of a type of stacking fault, it is convenient to make 
up a space based on the relevant fault probabilities. 
The probability space for the Jagodzinski theory (III) 
is illustrated in Fig. 12 of a previous paper by the pres- 
ent author (Sato, 1962). 

When the above equivalence of a stacking sequence 
to its twinned counterpart is abandoned, new types of 
stacking faults result. They are referred to as 'extended 
growth faults'. The necessity of this abandonment in 
the theory of stacking faults has been pointed out by 
Kakinoki, Komura & Hiziya (1955) and Kakinoki 
(1961, 1965, 1967), and experimental evidence favour- 
ing it has been presented by Nishiyama, Kakinoki & 

Table 1. Various types of  stacking faults in close-packed crystals 
(I) s = 1 : most random1.2 

Growth faults (II) s = 2: WILSON3,4 (I) 
(III) s = 3 :  JAGODZINSKI 1'5'6 (I) (I]) 

(IV) s =  1 : PATERSON7 (I) 
Extended growth faults (V) s - -2 :  KAKINOKI 8,9 (I) (II) (IV) 

(VI) s=3:KArdNOrd8,9 (I) (II) (III) (IV) (V) 

in h.c.p. (VII) single: C"nR1S~Arql0 (I) 
Deformation { (VIII) double: SA'rO 11 

faults l" (IV) single: PATERSON7 (I) 
in f.c.c, l (IX) double: JOm~SON12,13 

(X) triple: SA'rol 

(1) Jagodzinski (1949a), (2) Guinier (1956), (3) Wilson (1942), (4) Hendricks & Teller (1942), (5)Jagodzinski (1949b), (6)Jagod- 
zinski (1949c), (7) Paterson (1952), (8)Kakinoki  (1965), (9) Kakinoki (1967), (10) Christian (1954), (11) Sato (1969), (12) Johnson 
(1963), (13) Warren (1963), (14) Sato (1966a). 

A C 25A - 3 
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Kajiwara (1965) from a martensitic Cu-A1 alloy. For 
'extended growth faults' the necessary fault probabili- 
ties are 2 s-1 in number. The probability space for the 
s = 2  theory is illustrated by Kakinoki (1965) (see Fig. 2 
below). 

On the other hand, a 'deformation fault' arises if a 
shearing force parallel to the stacking layers gives rise 
to a translation of one half of a close-packed crystal 
relative to the other half (Paterson, 1952; Barrett, 
1952). In view of the fact that the 'Reichweiten' 
for 'deformation faults' can be invariably thought of 
as unity in a mathematical formalism, they are classi- 
fied in Table 1 with respect to their original stacking 
pattern; two simple cases are the Christian theory (VII) 
for h.c.p, and the Paterson theory (IV) for f.c.c. In 
addition, 'multiple deformation faults' should be dealt 
with. The 'single" (IV) and 'double' (IX) deformation 
faults in f.c.c, are referred to also as the 'intrinsic' and 
'extrinsic' stacking faults, respectively (e.g. Barrett & 
Massalski, 1966). It is remarkable that all the layers 
outside a 'double' deformation fault in h.c.p. (VIII) or 
a 'triple' deformation fault in f.c.c. (X) maintain the 
original regular positions (Sato, 1966a, 1969). If the 
fault probability for any type of 'deformation fault', 
invariably one in number, approaches unity, the struc- 
ture tends invariably to the twin of the original struc- 
ture. 

As is seen in Table 1, the Paterson case (IV) can be 
understood in two ways: it is either the 'extended 
growth fault' with s = 1 or the 'single deformation fault' 
in f.c.c. 

The terms 'growth' and 'deformation' used above 
characterize only the geometry of stacking sequences; 
they should not be understood as suggesting any actual 
physical process giving rise to the fault. For instance, 
a 'growth fault' can occur not only during growth, but 
also during deformation, and also during other pro- 
cesses, such as transformation. This remark should be 
borne in mind in the physical interpretation of the 
fault probabilities obtained from experiments. 

The Gevers theory (II n t- VII) and the s =  2 theory (V) 

Gevers (1954) combined the Wilson theory (II) and the 
Christian theory (VII); for the h.c.p, structures con- 
taining growth faults (s=2) and deformation faults 
(single) he obtained a formula for the intensity dis- 
tribution in reciprocal space by use of the difference 
equation method (Wilson, 1942, 1962). His result was 
confirmed by Kakinoki (1965, 1969) by use of the 
matrix method (Hendricks & Teller, 1942; Kakinoki & 
Komura, 1952, 1954a, b, 1965; Kakinoki, 1961, 1965, 
1966a, 1967). 

The probability space for the Gevers theory (II + VII) 
is shown in Fig. 1, where c~ and fl are growth and de- 
formation fault probabilities in h.c.p., respectively. The 
space is referred to as the Gevers square. The left lower 
corner (origin) represents the original h.c.p., and the 
right lower one the f.c.c., a half of which is the twin 

of the other half (f.c.c. + ). The terms positive ( + )  and 
negative ( - )  denote the sequences A - ,  B ~ C ~ A 
and A--~ C ~ B ~ A, respectively (International Tables 
for X-ray Crystallography, 1959). Since any point in 
the upper side invariably represents the twin of the 
structure represented by the corresponding point in 
the lower side, the meanings of the other two corners 
are as indicated. The diffraction theory for the lower, 
upper, or left-hand side is the Wilson theory (II) or 
the Christian theory (VII). That for the right-hand side 
is the Paterson theory, but with the condition that a 
certain stacking sequence and its twinned counterpart 
occur invariably with a common probability. This con- 
dition leads to W-=0.5,  where W- is the fraction of 
two-layer negative sequences [see equation (6) below]. 
The Paterson theory modified in this way is denoted 
by Paterson* (IV*). In the two lines, c~-- 0.5 and f l= 0-5, 
the structure turns into the most random close-packed 
one (I). The intensity distributions in reciprocal space 
at many points in the Gevers square have been numer- 
ically calculated by Kakinoki (1966b). 

For powders of nearly h.c.p, and nearly f.c.c, struc- 
tures, where growth and deformation faults are both 
rare, Warren (1959) has obtained formulae expressing 
the anomalies in the diffraction line profiles, i.e. peak 
displacement, broadening, and asymmetry [see also 
Anantharaman & Christian (1956) and Wagner 
(1957)].]" Although, according to Kakinoki (1965, 
1969), Warren's derivation contains some inadequate 
reasoning, the formulae obtained are correct in the 
vicinities of the four corners of the Gevers square. By 
his formulae, growth and deformation fault probabili- 
ties can be determined separately. 

Although the Gevers theory (II +VII),  which leads 
to Warren's formulae for polycrystal cases of low fault 

t Note that Warren (1959) uses ~ and fl for deformation and 
growth fault probabilities respectively, in either the h.c.p, or f.c.c. 
structure. 

b.c. 
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Wilson (11) f.c.c. + 

Fig. 1. The Gevers square for (II + VII). 
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probabilities, is concerned with single-crystals, it in- 
variably postulates W---0.5;  thus W- of a f.c.c.+ 
crystal containing stacking faults must be 0-5, however 
rare the faults may be. In order to avoid such an un- 
reasonable situation, it is necessary to replace this 
theory with a new one, where W- is not confined to 
0.5. Out of many possibilities for such a theory, the 
simplest one may be the theory of the extended growth 
fault with s- -2  (V) (Kakinoki, 1965). 

The probability space for this theory, i.e. the s = 2  
square, is shown in Fig. 2, where two extended growth 
fault probabilities, cq and c~2, are so defined as to make 
the structure more positive and negative, respectively, 
as their values increase. The right-hand side (thick line) 
represents f .c.c.+,  and the upper side (thick broken 
line) f . c . c . - .  W- at the right upper corner depends on 
the way along which the corner is approached; it be- 
comes equal to 0.5 if the corner is approached along 

(12 

t 
h.c.p. 

f . c . c . -  f.c.c. + 
i ~ . m , .  , J  i ~  

Fig. 2. The s= 2 square for (V). 

f.c.c. + 

4 f.c.c.+ 

i I 
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1 h.c.p. ~ (l~ f.c.c.+ 
3 

Fig. 3. The probability-cube for the new theory (V+VII). 

the diagonal. For a diagonal, ~1 = c~2, the theory reduces 
to the Wilson theory (II), and for the other, cq + c~a = 1, 
to the Paterson theory (IV). At the centre, ~ --~2--0.5, 
the theory reduces again to that regarding the most 
random structure (I). The intensity distributions in 
reciprocal space at many points in the s = 2  square 
have been numerically calculated by Kakinoki (1966b), 
for both single and polycrystal cases. 

The probability-squares (Figs. 1 and 2) for the above 
two theories are quite different from each other. Since 
the Gevers theory is concerned only with the growth 
and deformation faults, the Gevers square (Fig. 1) does 
not include the proper Paterson case (IV), although it 
includes the Paterson* case (IV*). On the other hand, 
the s =  2 square (Fig.2) does not include the Christian 
case (VII), since there the deformation fault in h.c.p. 
is not taken into account; the s- -2  case (V) is no more 
than an extension of the Wilson case (I1), where the 
growth fault is generalized to the extended growth 
fault. 

Therefore, the two theories are both insufficient for 
interpreting experimental results on the close-packed 
crystals in which extended growth faults (s < 2) [neces- 
sarily including growth faults (s < 2)] and deformation 
faults (single) are present independently. It is desirable 
to propose a more general theory which includes both 
these theories as special cases. 

A more general theory 

The probability space for the new theory (V + VII) can 
be made up by combining cq, e2, and fl as in Fig. 3. 
It is readily understood that the plane 1278 in the re- 
sulting cube corresponds to the Gevers square, and 
the bottom 1357 or the top 2468 to the s - -2  square. 
The structures at the corners and in the edges are as 
indicated. The structure in the plane fl--0-5 and in the 
line cq = ~2 = 0.5 is the most random one (I). The Wilson 
case (II), the Christian case (VII), the Paterson case 
(IV), and the Paterson* case (IV*) are incorporated in 
the cube as indicated. It is to be noted that any path 
in the face 3768 from the edge 37 to the edge 68 cor- 
responds to the Paterson case (IV), unless the path 
touches the edge 78. The same holds for the face 4857. 

The nature of an A, B, or C layer can be character- 
ized by the suffixes 1 and 2, which imply that the nor- 
mal (not faulted) sequence to the subsequent layer is 
positive or negative, respectively. Then the probabili- 
ties for occurrences of all kinds of layers can be tabu- 
lated as follows. 

A1 A2 B1 B2 Cx C2 
A1 d2 a2 b2 c2 
Az cl bl al dl 

B1 b2 c2 d2 az, 
B2 a~ dl c~ b, 
C1 d2 a2 b2 c2 
C2 Cl bl al dl 

(1) 

A C 25A - 3* 
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where 
a l = ( 1 - a l )  ( l - t )  az=(1-~z)  ( l - t )  
bx =.x(1 - f l )  b2 = ~z(1 - f l )  (2) 
cl =(1 -cq)fl  c2=(1 -~2)fl ' 
da =a~/~ 4==~/~ 

and the values at the blanks are all 0. This Table itself 
is the matrix P from which the mathematics along the 
lines of Kaldnoki (1965, 1967) and Kakinoki & Ko- 
mura (1965) starts. In the following only necessary ex- 
pressions will be given. 

If the fraction of the layers whose symbols have the 
suffix 1 (or 2) is denoted by w, (or w2), we obtain 

w~=(1- ~)/(2-.~-.=) } 
w z = ( 1 - e 2 ) / ( 2 - e x - e z )  " 

(3) 

If the fraction of two-layer positive (or negative) se- 
quences, w+ (or w-), is classified as above with respect 
to the nature of the final layer, we obtain 

w+l=wld2+w2cl=(l_oq)fl/(2_oq_o~2) 1 
W + 2 =  Wla2  -t- w2bx = (1 -a2)  (1 - f l ) / (2--  cq-- ~2) 
w-l=wlb2+w2ax=(1-al)  ( 1 - f l ) / ( 2 - c q - a 2 )  . (4) 

W -  2 = W 1 C 2  "t- w2dl = (1 - ~2),8/(2 - o~ 1 - o~2) 

Here it is to be noted that 

w+2 + w-1 = 1 - f l  ] (5) 
w+l + w-z = fl ~ 

The fractions of the total two-layer positive and nega- 
tive sequences are 

W+= w+, + w+z = [1-az- (oq-o~z) f l l / (Z-oqy~?)  
W-=  w-1 + w-2= [1 -oq  +(oq-O~E)fll/(Z-oq-o~z),~J' (6) 

respectively. 
If the three-layer sequences as in h.c.p., - +  and 

+ - ,  and those as in f.c.c., + + and - - ,  are denoted 
by h + ,  h - ,  c + ,  and e - ,  respectively, their fractions 
are given by 

wh+ = w-l(a2 + d2) + w-2(bl + Ca) 
=[(1 -cq)  (1 - c~2)- ( 2 -  30q- 3~2 

-I- 4(X1~2) f l  (1 -,6)]/(2 - O~ 1 - -  0~2) 

W/~- = W+l(b 2 + c2) + w+2(al +dl) 
W h +  

we+ = w+l(az + d2) + w+l(bl + cO 
= W +  - W h +  

we- = w-l(b2 + c2) + w-~(al + dl) 
= W - - - w h -  

(7) 

Then the hexagonality, Wn (Sato, Itoh & Yamashita, 
1964; Sato, 1966b; Brafman & Steinberger, 1966; Braf- 
man, Alexander & Steinberger, 1967), and the cubicity, 

We, become 

Wh = wn+ + wh- = 2wh+ i 
We = We+ + we- = 1 - 2wn+ j " (8) 

Since the unit layer has a sixfold symmetry, it is 
convenient to employ the unit-layer hexagonal indices 
hk.  ~, wlfich are related to the cubic indices HKL and 
the ordinary hexagonal indices hk.  l as 

h= - H/2 + K/2 l 
k= - K/2 + L/2 ! 

= HI3 + K/3 + L/3 
~= l/2 

(9) 

As is well known, diffraction effects due to stacking 
faults appear only in the { direction, and moreover 
only along the reciprocal lines h - k  = + 1 rood 3. It is 
only sufficient, therefore, to deal with diffraction in- 
tensity distributions along these lines as functions of 
a continuous-valued (. 

The unitary intensity I as a function of 

9 = 2 n (  (10) 

can be expressed to a good approximation by 

I(~o)= ND(~o) , (11) 

where N is the number of unit-layers, and D(~0) the 
diffuse term (Kakinoki & Komura, 1954b; Kakinoki, 
1961, 1965, 1967): 

o o  

D((o)=l +{ X Tmexp(-im~o)+conj} . (12) 
1 

Here 

Tin= ( VnV,,+m )n/(VoVo) , (13) 

where the numerator is the average value of the pro- 
ducts of the structure factors, V's, of two unit-layers 
separated by m interlayer spaces, and V0 is the com- 
mon unit-layer structure factor. It is to be noted that 
To = 1 invariably. Starting from (1) we obtain 

Tx =eW+ + e* W_ 

= - ½  + i l/3 d '(1-2]?) (14) 
2 2 - ~  ' 

where 
e= exp {2rci(h-k)/3} (15) 

(16) 
~ '  = 0q - -  t~2 / ' 

and + correspond to h - k  = + 1 rood 3, respectively. 
The characteristic equation for the present problem 

is 

F ( x )  = x 2 -  {~(~,_ a'p) + ~*(~2+ a'/~)}x 
- ( 1 - 6 )  (1 -3y)  

= x2  + ½ { 6 - T  - i 1 /35 ' (1  - 2 f l ) } x  

- ( 1 - ~ )  ( 1 - 3 y ) = 0 ,  (17) 
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where 

~=fl(1 - f l ) .  (18) 

The relationship between Tm and the two solutions of 
(17), xl and x2, is 

T~ = clx'I' + c2x'~ , (19) 

where c~ and cz are two constants, which can be deter- 
mined by the relations To = 1 and (14). 

According to Kakinoki (1965, 1967) and Kakinoki & 
Komura (1965), however, D(~0) can be obtained with- 
out solving (17) and without determining c~ and c2. 
The results corresponding to h - k =  _+ 1 mod 3 are 

D±((o) = P±(~o)/ Q +(~o) 

P±(~o) = 1 + ~o~z- (1-6)2(1 - 3y)2 + O'z(1 - 3y) 
+ {2~Za~Z/-O-8'2(1- 6y)}/(2- 6) 
- 3(1 - 6)y cos (o 
~ 31/3(1 - J)6 ' (1-2f l )y sin ~o/(2- J) (20) 

Q±(~o) = 1 + ~1~2+ ( 1 -  6)2(1- 3y)z+cS'z(1- 3y) 
+ 0 { 8 ( 1 - 3 y ) +  3y} cos (o 
- 2 ( 1 - 0 )  ( 1 -  3y) cos 2cp 

1 /3{2 - J -3 (1 -6 )~ ,} J ' ( 1 -2 f l )  sin ¢ 

D±(~0) = D:F(-- ~0 ) . (21) 

Special choices of ~1, c¢2, and fl show that (20) covers 
the results for the Gevers case (II + VII), the s = 2 case 
(V), the Wilson case (II), the Christian case (VII), the 
Paterson case (IV), the Paterson* case (IV*), and the 
most random case (I). 

For powder samples, the form 

O~(~0) = ½{D+(~0) + O-(¢0)} 
=½{D+((p)+h+(-~0)}=½{D-(~0)+h-(-~0)} (22) 

should be used. It is to be noted, however, that 

D~(~o)= D+(~o)= O-(~o) = D + ( -  ~o)= O- ( - (o )  (23) 

for the Gevers case (II +VII), and also for (II), (VII), 
(IV*), and (I), since all these cases are concerned with 
crystals with W- = 0.5. The unitary intensity for powder, 
I~, necessarily becomes 

I~( ~o) = NO ~( ~o) . (24) 

In powder diffraction experiments any deviation in 
¢ (rad), zl~0 (rad), is observed as a deviation in twice 
the Bragg angle, A(20). The conversion is carried out by 

180 cos2~ 
A(20) (o)_ ~2 ( tan 0.  A¢,  (25) 

where q5 is the angle between the ~ direction and the 
line connecting the reciprocal lattice point with the 
origin. 

Although the general solution of the present prob- 
lem has been given by (20), (22), and (24), the cases 
of nearly h.c.p, and nearly f.c.c, structures are most 
interesting. In Fig. 3 the formeris  represented by the 

vicinities of the corners 1 and 2, which are essentially 
equivalent to each other. Equation (22) implies that 
the vicinities of the edges 37, 48, 57, and 68, which 
represent the latter are all equivalent to each other for 
powders. It is only necessary, therefore, to obtain D~o(~0) 
near the corner 1 and near the edge 37 and to examine 
them in detail. 

Nearly  h.e.p, structures 

Since near the corner 1 of Fig. 3 cq, ~2, and fl are all 
small, the terms higher than second in order will be 
neglected. Then from (6), (8), and (14) we obtain 

d' 
W - = ½ -  -4 (26) 

J 
Wh = 1 - ~ - 2fl (27) 

T1 = -½ + i ~4 ~ ~'. (28) 

The characteristic equation (17) becomes 

F(x)=x2+½(O~il /3O')x - 1 + J +  3/3=0.  (29) 

In the foregoing section the result was reached without 
obtaining xl, xz, cl, and cz in (19). In order to make 
the result more comprehensible, however, it is desirable 
to write them explicitly. They become 

xl = X1 exp ( + in) } (30) 
xz=X2 exp { _+ i ( n -  or)} 

X l = l - ¼ d - { f l  } (31) 
x2= 1-¼~-{/~ 

V3 ~, (32) O" ~--- --~-- , 

ca=¼(1 - { f l )  } (33) 
C 2 = ~ ( 1  + ½ f l )  

for h - k =  + 1 mod 3. The summation of (12) leads to 
D±(~0), and (22) leads to 

cl cx C(Xl,~o+a) D~(~0)= -2- C(Xl ,~O-a)+ ~- 

c2 C(X2, - rc + a) ,  (34) c2 C ( X 2 , ~ o - ~ - a ) +  T 
+ 2- 

where the function C is defined as 
o o  

C(R, V) = 1 + 2 X R m cos m v  = 1 - -  R 2 (35)* 
1 1 + R2--2R cos~" 

For cq=~2, (34) becomes the formula obtained by 
Warren (1959) for nearly h.c.p, powders of the Gevers 
case (II + VII). 

* The summation in (35) [or in (51) below] converges only 
for IR[ < 1. Note that 0< R< 1 [R< 1 except for Y2 of (45) be- 
low] for the present problem. 
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Equation (34) consists of four terms, each repre- 
senting a symmetric bell-shaped curve, which has the 
maximum when the argument of the cosine is 0 mod 2n. 
Equation (10) and the last equation of (9) imply that 
the first two terms correspond to the reflexions with 
even l, and the last two to those with odd l, each 
slightly displaced and broadened by the presence of 
stacking faults. The combined function of the first two 
terms and that of the last two are both invariably sym- 
metric with respect to the regular positions of reflex- 
ions. Examination of the second derivative of the first 
combined function at cp =0  mod 2n shows that, if the 
approximations (31) and (32) are employed, the first 
two terms invariably coalesce to give a single maximum 
there. Similar examination of the second combined 
function, on the other hand, shows that the last two 
terms coalesce to give a single maximum at cp = n mod 
2n only when: 

for cq > ez" cq < 2ez + 3,8 t " 
for O~ 1 < (~2 " (~2 -- 2cq + 3,8 ~ ' (36) 

otherwise, they coalesce to give two maxima separated 
slightly from each other. 

The integral breadth B of the reflexions with even 
l is readily obtained: 

3,2 
Beven(rad)=2n {~(5+ 2,8)+~-~2fi l , (37) 

and B of the reflexions with odd l in the case where 
(36) is satisfied is 

~,2 
Boaa(rad)=2,{½(5+6,8)+~- 5-+--6,8 } "  (38) 

The second terms of (37) and (38), in which the de- 
viations from the Gevers-Warren case is reflected, are 
of the first order, although they each contain a small 
second order quantity. They drop out for al =~z, and 
(37) and (38) become harmonized with the half-maxi- 
mum breadths calculated by Warren (1959) for nearly 
h.c.p, powders of the Gevers case (II +VII).  

If Wh is kept constant, (27) describes a plane. Varia- 
tions of Beven, Boda, Beven/Bodd, etc. in a plane of this 
kind, where Wh=0"92 is assumed, are illustrated in 
Figs.4 and 5. In Fig.4 ,8=0.02 is assumed, although 
0_<,8<0.04 for Wh=0"92. The broken curves for Bodd 
near both sides show the formal numerical calculation 
of (38) corresponding to the doublet peak case. Fig. 5, 
where ~1=~2 is assumed, corresponds to the Gevers- 
Warren theory for nearly h.c.p, structures. 

N e a r l y  f . c . c ,  s t r u c t u r e s  

The mathematical treatments for the vicinity of the 
edge 37 of Fig.3 should be carried out in two parts. 
The first excludes the vicinity of the corner 7, which 
is the subject of the second. If we define 

col= 1-cq ] 
(39) 

0 9 2 =  1 --~2 f ' 

it turns out that, for the first part, o91 and ,8 are small, 
whereas 0~ 2 is arbitrary (but 1-c~2=co2 not small), and 
that, for the second, o)1,092, and ,8 are all small. 

For the vicinity of the edge 37 excluding the vicinity 
of the corner 7, we obtain 

co, + f l  (40) 
W - =  l-c~2 

Wc = 1 -2co l - - 2 ,8  (41) 

l/3_ 2o3, 2,8) (42) 
T1 = -x2 +_i- (1 1-ct2 

F(x)=x2+-}2[1 -~-0C2--O-)1 ~iV3{(1 -c~2) (1 - 2 f l ) -  co,}]x 
+ ct2(1 - 3fl) - o91 = 0 (43) 

xl = I"1 exp ( + iO) } 
Xa= }rE exp (T-iO) (44) 
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0"5  
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a l  
Fig.4. a2, W-, Beven, Bodd, and Beven/Bodd VS. ~1, for Wh= 

0-92 and fl= 0.02. 
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3 1+0C2 
Y1 = 1 ~ 7 a~x--~P 

Y2=°¢2 { 1 -  (1-°c2)(2-F~x2)2O~2A-- 091 --}fl} 

+fl)  0 = - 3  + f " 1, ~i o9~ 

A = 1 q-a2nt-a22 

¢1 = (1 -- U )  q- i V  

¢2 = U ' ~  i V  

U = 3c¢2(1 q- 4~2 q- c¢~) 
2(1 - 0¢2)A 2 

31/30c2(1 + c¢2) 
V . . . . . .  (D 1 

2A 2 

- -  ( 2 9 1  

(45) 

( 4 6 )  

(47) 

(48) 

(49) 

B~v.. 

B odd 
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Fig. 5. fl, W-, Beven,  Bocld, a n d  Beven/Bocld vs. ~, for Wh =0"92 
and ~1 ---~ 0 ¢ 2  = ~. 

O~(~o) = 
1 _ ~  V 

C(r l ,~ -O)+ -~ s ( r , ,~ -O)  

+-~u C(r~, ~ - 0 ) +  -~v s(r2,¢-O) 

1 - U  C(YI,~o+O)- V + --U- T s(Y1,~+o) 

U V 
+ -2- C(Y2,¢+0)-  -~ S(Y2,~+O), (50) 

where, in addition to the function C of (35), the func- 
tion S is defined as 

oo 
S(R, ~/)=2 Z R m sin m~u= 2R sin ~u (51) 

1 1 + R 2 - -  2R cos ¢/ 

If, in addition to o91 and fl, (X 2 is also small, i.e. for 
the vicinity of the corner 3, (50) reduces to 

where 

D~(~o)=½C(Y,q)-O)+½C(Y,~o+O) , (52) 

Y= 1 - k(col +p) (53) 

2re I/3 
O =  ~ -}- T ( (Ol- l - f l )  . (54) 

Equation (52), which does not depend on az, is exactly 
the formula for the Paterson* case (IV*) for nearly 
f.c.c, structures, if o)1 +fl is regarded as the fault prob- 
ability. This situation is in harmony with the relation 
of the Paterson case (IV) to the corner 3 (see Fig.3). 

In the first half of (50), the first and the third terms 
are symmetric with respect to their maximum position, 
rp = 0 mod 2~r, whereas the second and the fourth are 
asymmetric, and moreover antisymmetric, with respect 
to rp = 0 rood 2~r. These four terms coalesce to give a 
reflexion close to the regular position, ~0 =2~z(½ rood 1). 
Since the two antisymmetric terms are proved to affect 
only negligibly the maximum position of the two sym- 
metric terms, the maximum of the combined reflexion 
remains at re=0 rood 2zr. The integral breadth B of 
the combined reflexion consists of two parts; one is 
( B / 2 ) - b  for the left of the maximum, and the other 
(B/2) + b for the right of it. Almost the same applies 
to the other combined reflexion close to the other reg- 
ular position, ~0=21r(-½ mod 1), resulting from the 
second half of (50). Then the displacement d of the 
maximum from the regular position, the integral 
breadth B, and the asymmetry biB are calculated to be 

, 
d (rad)= _+ --2-- (55) 

l+Ya  l + Y 2 ~  -1 
B (rad) =2re (1 - U) ~ i -  + U T ~ - ~ 2 j  (56) 

b ( l + r ,  1 + r 2 )  
B - +  Vln  (57) 

- rc l - Y 1  l - Y 2  ' 
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where + correspond to the reflexions whose regular 
positions are at tp=2n( +½ rood 1), respectively. 

On the other hand, for the vicinity of the corner 7, 
we obtain 

w _ =  (0)~ - 3 '~)/  A (58) 
We = 1 - 20)x0)2/A - 2fl (59) 

A =0)1Jr0)2 ] (6O) 
At = 0)1 ~ 0)2 I 

TI=_½_T_iV3 A' (1 -2 f l )  (61) 
2 A 

F(x)=xZ+½(Z-A+_i1/3A')x+ l - A - 3 f l = O  (62) 

xx = Z1 exp ( _+ iv) ] 
(63) 

X 2 ~'~ Z 2 exp ( ~  i2-) 

Z1 = 1 - 0 ) 1 - ~ f l  ] 
(64) 22= 1-0)2-}/~ I 

2. I/3 
2-= ~ + --)-- fl (65) 

c1=0)2/A + i0)10)2/(1/3A) ] 
c2=0)1/A "~ i0)10)2/(1/3A) ~ (66) 

0)2 0)10)2 
Dv(~0) = ~ C(Zl,~o- r ) +  ~ S(Zx, q~- r) 

0)1 0)10)2 
+ 2-~ c ( z 2 , ~ - r ) +  --2~,3~ s ( z 2 , ~ - O  

0)2 0)10)2 
+ ~ c(z,,~o+0- 2~3~ s(z,,~+2-) 

0)1 0)10)2 
Jr -~ -  C ( Z 2 ,  q)Jr 2") 21/3 A S(Z2,q)Jr  2-). 

(67) 
For 0)1 =0)2, eight terms of (67) reduce to four, two 
symmetric and two antisymmetric, and (67) becomes 
the formula obtained by Warren (1959) for nearly f.c.c. 
powders of the Gevers case (II + VII). 

An examination of (67), similar to that of (50), leads 
to the following: 

( rad)= __ ~ fl (68) d 

(__~2 l J rZ1  COl l J r Z 2 )  -1 
B (rad) = 2re "-1-- Z---~ + A 1 - Z2 (69) 

b o910)2 [ 1 + Z1 1 + Z2 
B - -  /3~2 In \ i ± Z ~  -]--~-21 ' (70) 
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Fig.6. o91, W-, Idl, B, and Ibl/B vs. 0c2(or co2), for We=0.92 and fl=0.02. For 0~2_<0-9, (40), (41), (55), (56), and (57) are used, 
-and for co2<0"10, (58), (59), (68), (69), and (70) are used. 
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where + correspond, as before, to the reflexions whose 
regular positions are at rp = 2zff + ½ mod 1), respectively. 

Now, if Wc is kept constant, (41) and (59) describe 
a plane and a curved surface, respectively. Variations 
of Idl, B, Ibl/B, etc. in a plane or a curved surface of 
this kind, where We=0.92 is assumed, are illustrated 
in Figs. 6 and 7. In Fig. 6 fl = 0.02 is assumed, although 
0_<fl<0.04 for Wc=0.92. The misfits in Fig.6 at c~2= 
0.9 (092=0" 10) are ascribed to the approximations em- 
ployed. It is to be noted that B and Ibl/B become a 
maximum at o91=o92=0.04, where W-=0.5  (the 
Gevers-Warren case). Fig. 7, where o91 = o92 is assumed, 
corresponds to the Gevers-Warren theory for nearly 
f.c.c, structures. 

Discussion 

In the foregoing sections, the diffuse terms D~((0) [see 
(12), (22), and (24)] for nearly h.c.p, and nearly f.c.c. 
structures have been written in the form corresponding 
to that reached after the summation of the series (12) 
has been achieved. This form allows the explicit expres- 
sion of peak displacement, broadening, and asym- 
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Fig.7. fl, IV-, Idl, B, and lbl/B vs. co, for Wc=0"92 and 
(.O 1 = 0 ) 2 = 0 9 .  

metry. Peak displacements and integral breadths in 
degrees of the Debye-Scherrer rings are calculated 
from (25), if d's of (55) and (68) and B's of (37), (38), 
(56), and (69) are regarded as A~0 (rad) in (25). Asym- 
metries are given by (57) and(70). 

Fairly stable statistical structures intermediate be- 
tween two standard stacking patterns seem to be gen- 
erally described by s > 3. Two examples of such a case 
are CdS, intermediate between the hexagonal and the 
cubic modifications (Sato, 1962), and Cu3A1 fl' marten- 
site between 2- and 18-layer standard structures 
(Nishiyama, Kakinoki & Kajiwara, 1965; Kajiwara, 
1967). In these examples 'fault' probabilities, which 
can take quite large values, should be understood, 
regardless of their literal implication, as parameters 
describing statistical modes of layer stacking (Kaki- 
noki, 1966a). Nevertheless, for metal and alloy pow- 
ders prepared, e.g. by filing, 'fault' probabilities 
seems to be a good terminology, since they describe 
mistakes in a standard stacking, taking invariably small 
values. In this case, it may be justifiable to employ 
the lowest possible s, i.e. s=  2, at least to the first ap- 
proximation. It has been found, on the other hand, 
that the deformation faults actually observed in metals 
and alloys are almost only of the single (intrinsic for 
f.c.c.) type (Hashimoto, Howie & Whelan, 1962; 
Howie & Valdr~, 1963; Art, Gevers & Amelinckx, 
1963). Thus we believe that the present general theory, 
based on the extended growth fault with s--2 (V) 
[necessarily including (IV), (II), and (I)] and the single 
deformation fault in h.c.p. (VII), is suitable for the 
interpretion of experimental results on metal and alloy 
powders. 

In principle, the three fault probabilities, cq(o91), 
c~2(o92), and p, of a nearly h.c.p, or f.c.c, powder sample 
can be determined, if the experimental results are dealt 
with according to the present theory. Such exact deter- 
minations may, however, be extremely difficult, because 
of practical limitations in the quality of the diffraction 
experiments. 

The information obtained from the diffraction ex- 
periments on nearly h.c.p, powders is generally poor, 
since neither peak displacement nor asymmetry are 
found. Moreover, in Fig.4 for el-¢ e2, the variation of 
the ratio of the integral breadths, Beven/Boaa, is not 
remarkable. Thus the Gevers-Warren theory for cq = e2 
emerges as a practical, though rough, approximation 
to the present theory. Once this theory is assumed, the 
two fault probabilities, c~(= el = c~2) and fl, can be deter- 
mined by use of Fig. 5, where the variation of 
Beven/Boaa is considerable. 

For a nearly f.c.c, powder, generally peak displace- 
ment and asymmetry occur, in addition to broad- 
ening. Fig. 6 implies that, among these three quantities, 
the asymmetry [bl/B varies most remarkably, and that, 
if [b[/B is considerable, the point representing the struc- 
ture in the probability-cube (Fig. 3) is near the corner 7. 
In the right-hand half of Fig. 6 for o91 ~ co2, however, 
none of the variations of [d[, B, and [b[/B are remark- 
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able. Thus the Gevers-Warren theory for (.Ol=(.D 2 
emerges again as a practical, though rough, approxima- 
tion. Once this theory is assumed, the two fault prob- 
abilities, 0)(= o91 = 0)2) and fl, can be determined by use 
of Fig. 7. On the other hand, if the asymmetry is very 
slight, the point is near either the corner 3 (see the left 
hand half of Fig. 6) or the edge 78 (see Fig. 7). The 
stacking faults in this case are mainly of the Paterson 
type, and it is in principle impossible to determine 
whether the point is near the corner 3 or near the edge 
78, so far as the powder diffraction is concerned. 

The Gevers-Warren theory is being widely employed 
for interpreting stacking faults in powders of metals, 
alloys, and other materials of h.c.p, and f.c.c. (and, 
additionally, b.c.c, and other) structures. Reviews on 
such lines have been given by Warren (1959), Wagner 
(1966), and Mikkola & Cohen (1966). Strain and par- 
ticle-size effects discussed in these reviews are beyond 
the scope of the present paper. It must be emphasized, 
however, that the Gevers-Warren theory is no more 
than a very simplified case of the more general theory 
proposed in the present paper. Therefore, the growth 
fault probability c~ or co and the deformation fault 
probability fl deduced from the Gevers-Warren theory 
should be taken as very rough approximations. This 
situation should be particularly emphasized for the 
former, c~ or 0), since e = e l  =(x2 or co=0)~ =092, which 
leads necessarily to W-=0-5,  is generally not the ease 
for particles of actual powder samples. Roughly speak- 
ing, the growth fault probability deduced from this 
theory should be taken as the average of two extended 
growth fault probabilities, (0q-t-~2)/2 or (o)1+o)2)/2. 
Nevertheless, so far as powder diffraction is con- 
cerned, we are obliged to be content with this theory 
in view of the poor quality of diffraction experiments. 
Finally, it is noted again that the terms 'growth' and 
'deformation'  should be used carefully; as has been 
mentioned in the last paragraph of the introduction, 
they characterize only the geometry of stacking se- 
quences. 

The author wishes to express his sincere thanks to 
Professor Kakinoki, Osaka City University, who kindly 
perused the original form of the present paper and gave 
him many helpful comments. The paper is published 
by permission of Central Research Laboratory, Mitsu- 
bishi Metal Mining Co., Ltd. 
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